Characterizing extremal graphs for open neighbourhood location-domination
نویسندگان
چکیده
An open neighbourhood locating-dominating set is a S of vertices graph G such that each vertex has neighbour in S, and for any two u,v G, there at least one exactly u v. We characterize those graphs whose only the whole vertices. More precisely, we prove these are which all connected components half-graphs (a half-graph special bipartite with both parts same size, where part can be ordered so neighbourhoods consecutive differ by vertex). This corrects wrong characterization from literature.
منابع مشابه
Location-domination in line graphs
A set D of vertices of a graph G is locating if every two distinct vertices outside D have distinct neighbors in D; that is, for distinct vertices u and v outside D, N(u) ∩ D ≠ N(v) ∩ D, where N(u) denotes the open neighborhood of u. If D is also a dominating set (total dominating set), it is called a locating-dominating set (respectively, locating-total dominating set) of G. A graph G is twin-...
متن کاملCommon Extremal Graphs for Three Inequalities Involving Domination Parameters
Let δ(G), ∆(G) and γ(G) be the minimum degree, maximum degree and domination number of a graph G = (V (G), E(G)), respectively. A partition of V (G), all of whose classes are dominating sets in G, is called a domatic partition of G. The maximum number of classes of a domatic partition of G is called the domatic number of G, denoted d(G). It is well known that d(G) ≤ δ(G)+1, d(G)γ(G) ≤ |V (G)| [...
متن کاملOn global location-domination in bipartite graphs
A dominating set S of a graph G is called locating-dominating, LD-set for short, if every vertex v not in S is uniquely determined by the set of neighbors of v belonging to S. Locatingdominating sets of minimum cardinality are called LD-codes and the cardinality of an LD-code is the location-domination number λ(G). An LD-set S of a graph G is global if it is an LD-set of both G and its compleme...
متن کاملLocation-domination and matching in cubic graphs
A dominating set of a graph G is a set D of vertices of G such that every vertex outside D is adjacent to a vertex in D. A locating-dominating set of G is a dominating set D of G with the additional property that every two distinct vertices outside D have distinct neighbors in D; that is, for distinct vertices u and v outside D, N(u) ∩ D 6= N(v) ∩ D where N(u) denotes the open neighborhood of u...
متن کاملLD-graphs and global location-domination
A dominating set S of a graph G is a locating-dominating-set, LD-set for short, if every vertex v not in S is uniquely determined by the set of neighbors of v belonging to S. Locating-dominating sets of minimum cardinality are called LDcodes and the cardinality of an LD-code is the location-domination number, λ(G). An LD-set S of a graph G is global if it is an LD-set for both G and its complem...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Discrete Applied Mathematics
سال: 2021
ISSN: ['1872-6771', '0166-218X']
DOI: https://doi.org/10.1016/j.dam.2021.06.006